Classification of Du Val Singularities

Feng Ling

The University of Texas At Austin
FLing@utexas.edu

April 29, 2014

Motivations and Background

Mathematicians enjoy resolving singularities, because many nice properties and theorems only applies to nonsingular things. So comes the desire to classify singularities whenever we can.

Resolution of a singularity $x \in X$ means finding a proper birational map $f: Y \rightarrow X$ s.t. Y is nonsingular and $f: Y \backslash f^{-1}(x) \rightarrow X \backslash x$ is an isomorphism. So x is mapped by curves (Riemann surfaces) on the nonsingular surface Y.

Theorem (Abhyankar...)
The singularities of any surface can be resolved.

Motivations and Background

Theorem (Resolution of imbedded curve singularities, SH IV(4.1.1))

For any irreducible curve $C \subset X$ a nonsingular surface, there exists another surface Y and a regular map $f: Y \rightarrow X$ s.t. f is a composite of blow-ups and the birational transform of C is nonsingular on Y.

Theorem (HS V(5.5))

Let $T: X \rightarrow X^{\prime}$ be a birational transform of surfaces. Then T can be factored into a finite sequence of monoidal tranformations (blow-ups at a point) and their inverses (blow-downs at a point).

Therefore we can classify a singularity by classifying the sequence of exceptional curves resulted from the blow-ups. To do so, we analyze them using the idea of "intersection numbers." And we can define them s.t. they agree with our intuition of intersections of curves (Riemann surfaces).

Motivations and Background

On the other hand, we should only be concerned with the minimal resolution, which is a resolution where the blow-up steps do not produce unnecessary (contractible) exceptional curves.

Theorem (from Castelnuovo's criterion)

All (-1)-curves can be contracted.
Here (-1)-curves refers to curves that are isomorphic to \mathbb{P}^{1} with self intersection number -1 .

Motivations and Background

The canonical classes of a surface holds important status, so we would like to leave them alone when resolving singularities

Du Val Singularities

A point $x \in X$ of a normal surface is called a $D u$ Val singularity if there exists a minimal resolution $f: Y \rightarrow X$ contracting curves C_{1}, \ldots, C_{r} to x s.t. $K_{Y} C_{i}=0$ for all i, where K_{Y} is the canonical class of Y.

A Catch-22: classifying Du Val singularities leads us to the magical Dynkin Diagrams, so we would like to classify Du Val singularities.

More Background

Theorem (Contracted curves of a point, SH IV(4.2.2))

Let $f: Y \rightarrow X$ be a resolution of the singularity x on a surface X, where the inverse image of x is $C_{1} \cup \cdots \cup C_{r}$. Then the matrix $\left\{C_{i} C_{j}\right\}$ is negative definite.

Theorem (Adjunction Formula)

For any curve $C \subset X$, the canonical class K_{X} of the surface and canonical class K_{C} of the curve satisfies

$$
\operatorname{deg} K_{C}=C\left(C+K_{X}\right)
$$

Theorem (Degree Genus Formula)

For any nonsingular curve \bar{C} with genus $g(\bar{C})=g$, its canonical class $K_{\bar{C}}$ satisfies

$$
\operatorname{deg} K_{\bar{C}}=2 g-2
$$

More Background

Properties of Blowing Up a surface at a point

If we have the blow up X^{\prime} of a surface X at a smooth point $x \in C \subset X$ where C is a curve, then $\sigma: X^{\prime} \rightarrow X$ induces $\sigma^{\prime}: C \rightarrow C^{\prime}$ the birational (strict) transform of C and $\sigma^{*}: C \rightarrow C^{*}$ the total transform of C. Below we let L be the exceptional curve of the blow up, and we write the multiplicity of a point $x \in C \subset X$ as $\mu_{x}(C)=k$.
(1) $\sigma^{*}(C)=\sigma^{\prime}(C)+k L$
(2) $K_{X^{\prime}}=\sigma^{\prime}\left(K_{X}\right)+L$
(3) $\sigma^{*}(D) L=0 \quad \forall D \subset X$
(1) $\sigma^{*}\left(D_{1}\right) \cdot \sigma^{*}\left(D_{2}\right)=D_{1} D_{2} \quad \forall D_{i} \subset X$
(5) $L \sim \mathbb{P}^{1}$ and $L^{2}=-1$

Conclusions

Thus we can conclude

$$
\begin{align*}
C_{i}^{2} & =-2 \tag{1}\\
C_{i} C_{j} & =0 \text { or } 1 \tag{2}
\end{align*}
$$

Since classifying Du Val singularities is equivalent to classifying $\left\{C_{i}\right\}_{i=1}^{r}$, the above relation shows that it is also equivalent to classifying the negative definite lattice $\mathbb{Z} e_{1}+\ldots+\mathbb{Z} e_{r}$ where $e_{i}^{2}=-2, e_{i} e_{j}>0$, since we have $C_{i} \sim e_{i}$.

Therefore Dynkin Diagrams

Results

Name	Equation
A_{n}	$x^{2}+y^{2}+z^{n+1}$
D_{n}	$x^{2}+y^{2} z+z^{n-1}$
E_{6}	$x^{2}+y^{3}+z^{4}$
E_{7}	$x^{2}+y^{3}+y z^{3}$
E_{8}	$x^{2}+y^{3}+z^{5}$

Group

Resolution Graph

cyclic

$(n+1)$
binary dihedral ($n-2$)

binary
tetrahedral
binary
octahedral
binary
icosahedral

Dynkin Diagrams vs. Du Val singularities

References

囯 Igor R. Shafarevich (1972)
Basic Algebraic Geometry I
Robin Hartshorne (1977)
Algebraic Geometry
And most importantly my graduate student: Zhu, Yuecheng!

And drumrolls...

Now we can classify the Du Val singularities through some simple algebraic manipulations. First we have the following regarding resolution of embedded curve singularities.

$$
\begin{aligned}
\operatorname{deg} K_{\sigma^{\prime}(C)} & =\sigma^{\prime}(C)\left(\sigma^{\prime}(C)+K_{X^{\prime}}\right) \\
& =\left(\sigma^{*}(C)-k L\right)\left(\sigma^{*}(C)-k L+\sigma^{*}\left(K_{X}\right)+L\right) \\
& =\sigma^{*}(C) \sigma^{*}(C)-k \sigma^{*}(C) L+\sigma^{*}(C) \sigma^{*}\left(K_{X}\right)+\ldots \\
& \sigma^{*}(C) L-k \sigma^{*}(C) L-k \sigma^{*}\left(K_{X}\right) L+k(k-1) L^{2} \\
& =C^{2}-0+C K_{X}+0-0-0-k(k-1) \\
& =C\left(C+K_{X}\right)-k(k-1)
\end{aligned}
$$

Still drumrolls...

Then applying the above to full sequence of resolution of a Du Val singularity gets us

$$
\begin{aligned}
\operatorname{deg} K_{\bar{C}} & =\bar{C}\left(\bar{C}+K_{\bar{X}}\right) \\
2 g(\bar{C})-2 & =C\left(C+K_{X}\right)-\sum_{i} k_{i}\left(k_{i}-1\right) \\
\Rightarrow \quad 2+C\left(C+K_{X}\right) & =2 g(\bar{C})+\sum_{i} k_{i}\left(k_{i}-1\right) \geq 0 \\
\Rightarrow \quad C\left(C+K_{X}\right) & \geq 2 \\
\Rightarrow \quad C_{i}\left(C_{i}+K_{Y}\right) & =C_{i}^{2}+0 \geq 2 \\
\Rightarrow \quad C_{i}^{2} & =-2
\end{aligned}
$$

Drum guy's hands are getting tired...

Last but not least, let's apply the theorem about contracted curves to our case. Let $\alpha=(0, \ldots, 1, \ldots, 1, \ldots, 0)^{T}$, the vector with identity on i, j location and 0 otherwise. Therefore

$$
\begin{aligned}
\left\{C_{i} C_{j}\right\} & \text { is negative definite } \\
\Rightarrow \quad b(\alpha, \alpha)=\alpha^{T}\left(C_{i} C_{j}\right) \alpha & <0 \\
\Rightarrow \quad\left(C_{i}+C_{j}\right)^{2} & <0 \\
C_{i}^{2}+C_{j}^{2}+2 C_{i} C_{j} & <0 \\
C_{i} C_{j} & <2 \\
\Rightarrow \quad C_{i} C_{j} & =0 \text { or } 1
\end{aligned}
$$

